Автопортал || Авто - статьи

Сельскохозяйственная техника
Чтение RSS

Установка тока шаговых двигателей 3D дельта принтера. Снижение резонансных вибраций. A4988 драйвер двигателя

Опубликовано: 22.08.2018

Драйвер шагового двигателя A4988 - ProGDron.com

 

 

Характеристики:

модель: A4988;напряжения питания: от 8 до 35 В;возможность установки шага: от 1 до 1/16 от максимального шага;напряжение логики: 3-5.5 В;защита от перегрева;максимальный ток на фазу: 1 А без радиатора, 2 А с радиатором;расстояние между рядами ножек: 12 мм;размер платы: 20 х 15 мм;габариты драйвера: 20 х 15 х 10 мм;габариты радиатора: 9 х 5 х 9 мм;вес с радиатором: 3 г;вес без радиатора: 2 г.

 Описание и Схемы подключения здесь.

Плата создана на базе микросхемы A4988 компании Allegro - драйвера биполярного шагового двигателя. Особенностями A4988 являются регулируемый ток, защита от перегрузки и перегрева, драйвер также имеет пять вариантов микрошага (вплоть до 1/16-шага). Он работает от напряжения 8 - 35 В и может обеспечить ток до 1 А на фазу без радиатора и дополнительного охлаждения (дополнительное охлаждение необходимо при подаче тока в 2 A на каждую обмотку).

Описание:

Драйвер создан на базе микросхемы управления шаговым двигателем компании Allegro A4988, изготовленной по ДМОП-технологии с регулятором и защитой по току, поэтому мы настоятельно рекомендуем, перед использованием этого продукта,   ознакомиться со спецификацией A4988 (1MB pdf). Этот драйвер позволит управлять биполярным шаговым двигателем с выходным током до 2 А на обмотку (для получения дополнительной информации смотрите раздел о рассеивании мощности). Ниже приведены ключевые особенности драйвера:

Простой интерфейс управления шагом и направлением вращения электродвигателя Пять различных разрешений перемещения: полный шаг, 1/2-шага, 1/4-шага, 1/8-шага, 1/16-шага Регулируемый контроль тока с помощью потенциометра, позволит установить максимальный выходной ток. Это даст вам возможность использовать напряжение выше допустимого диапазона для достижения более высокой угловой скорости шага двигателя Интеллектуальное управление автоматически выбирает режим регулировки затухания тока (медленный и быстрый режимы) Защитное отключение при перегреве и перегрузке по току, а также блокировка питания при пониженном напряжении Защита от короткого замыкания на землю, защита от замыкания в нагрузке

Обратите внимание, что Pololu производит несколько драйверов шаговых двигателей, которые могут быть использованы в качестве альтернативы этого модуля. У драйвера шагового двигателя Pololu A4988 Black Edition производительность на 20% выше, и за исключением тепловых характеристик, Black Edition, и данная (зеленая) плата являются взаимозаменяемыми. Есть также большая версия драйвера Pololu на A4988, которая имеет защиту от обратной мощности на главном входе питания, а также встроенной 5 В и 3,3 В стабилизаторы напряжения, которые устраняют необходимость в покупке отдельного питания для логики и двигателей. Платы Pololu на DRV8825 предлагают на около 50% более высокую производительность в более широком диапазоне напряжений и с несколькими дополнительными функциями, в то время как платы на DRV8834 работают с двигателями с напряжением питания от 2,5 В; любую из этих плат можно использовать в качестве альтернативы этого драйвера во многих приложениях.

Использование:

Соединение с источником питания:

Для работы с драйвером необходимо питание логического уровня (3 - 5,5 В), подаваемое на выводы VDD и GND, а также питание двигателя (8 - 35 В) на выводы VMOT и GND. Чтобы обеспечить необходимый потребляемый ток (при пиковых до 4 А), необходимо поставить конденсаторы для гальванической развязки как можно ближе к плате.

Внимание: В плате используются керамические конденсаторы с низким эквивалентным последовательным сопротивлением, что делает её уязвимой для индуктивно-ёмкостных скачков напряжения, особенно если питающие провода длиннее нескольких сантиметров. В некоторых случаях, эти скачки могут превысить максимально допустимое значение (35 В для A4988) и повредить плату. Одним из способов защиты платы от подобных скачков является установка большого (не меньше 47 мкФ) электролитического конденсатора между выводом питания (VMOT) и землёй близко к плате.

Соединение двигателя:

При правильном подключении, через Pololu A4988 можно управлять четырёх-, шести- и восьми- проводными шаговыми двигателями

Внимание: Соединение или разъединение шагового двигателя при включённом драйвере может привести к поломке двигателя.

Размер шага (и микрошага):

У шаговых двигателей обычно установлена конкретная величина (например 1,8° или 200 шагов на оборот), при которой достигается полный оборот в 360°. Микрошаговый драйвер, такой как A4988 позволяет увеличить разрешение за счёт возможности управления промежуточными шагами. Это достигается путём возбуждения обмоток средней величины тока. Например, управление мотором в режиме четверти шага даст двигателю с величиной 200-шагов-за-оборот уже 800 микрошагов при использовании разных уровней тока.

Разрешение (размер шага) задаётся комбинациями переключателей на входах (MS1, MS2, и MS3). С их помощью можно выбрать пять различных шагов, в соответствии с таблицей ниже. На входы MS1 и MS3 переключателя установлены 100 кОм подтягивающие на землю резисторы, а на MS2 - 50 кОм, и если оставить их не подключёнными, двигатель будет работать в полношаговом режиме. Для правильной работы в режиме микрошага необходим слабый ток (см. ниже), который обеспечивается ограничителями по току. В противном случае, промежуточные уровни будут некорректно восприниматься, и двигатель будет пропускать микрошаги.

MS1

MS2

MS3

Разрешение микрошага

Низкий

Низкий

Низкий

Полный шаг

Высокий

Низкий

Низкий

1/2 шага

Низкий

Высокий

Низкий

1/4 шага

Высокий

Высокий

Низкий

1/8 шага

Высокий

Высокий

Высокий

1/16 шага

Входы управления:

Каждый импульс на входе STEP соответствует одному микрошагу двигателя, направление вращения которого зависит от сигнала на выводе DIR. Обратите внимание, что выводы STEP и DIR не подтянуты к какому-либо конкретному внутреннему напряжению, поэтому вы не должны оставлять эти выводы плавающими при создании приложений. Если вы просто хотите вращать двигатель в одном направлении, вы можете соединить DIR непосредственно с VCC или GND. Чип имеет три различных входа для управления состоянием питания: RST, SLP и EN. Дополнительные сведения об этих состояниях см. в техническом описании. Обратите внимание, что вывод RST плавает; если вы его не используете, вы можете подключить его к соседнему контакту SLP на печатной плате, чтобы подать на него высокий уровень и включить плату.

Ограничение тока:

Для достижения высокой скорости шага, питания двигателя, как правило, гораздо выше, чем это было бы допустимо без активного ограничения тока. Например, типичный шаговый двигатель может иметь максимальный ток 1 А с 5 Ом; сопротивлением обмотки, отсюда максимально допустимое питание двигателя равно 5 В (U=I*R). Использование же такого двигателя с питанием 12 В позволит повысить скорость шага. Однако чтобы предотвратить повреждение двигателя, необходимо ограничить ток до уровня ниже 1 А.

Pololu A4988 поддерживает активное ограничение тока, которое можно установить подстроечным потенциометром на плате. Один из способов установить предельный ток - подключить драйвер в полношаговый режим и измерять ток, протекающий через одну обмотку двигателя без синхронизации по входу STEP. Измеренный ток будет равен 0,7 части предельного тока (так как обе обмотки всегда ограничиваются примерно на 70% от текущей настройки предельного тока в полношаговом режиме). Учтите, что при изменении логического напряжения Vdd, на другое значение, изменит предельный ток, поскольку напряжение на выводе "ref" является функцией Vdd.

Еще один способ установить предельный ток – измерить напряжение на выводе "ref" и вычислить полученное ограничение тока (резисторы SENSE равны 0,05 Ом). Напряжение вывода доступно через металлизированное сквозное отверстие (в кружке на шёлкографии печатной платы). Ограничение тока относится к опорному напряжению следующим образом:

Current Limit = VREF × 2,5

Например: опорное напряжение равно 0,3 В, предельный ток 0,75 А. Как упоминалось выше, в режиме полного шага, ток через катушки ограничен 70% от текущего предела, поэтому, чтобы получить полный шаг тока катушки в 1 А, текущий предел должен быть 1 A / 0,7 = 1,4 А, что соответствует VREF 1,4 A / 2,5 = 0,56 В. Смотрите спецификацию A4988 для получения дополнительных сведений.

Примечание: Ток обмотки может сильно отличаться от тока источника питания, поэтому не следует измерять ток на источнике питания, чтобы установить ограничение тока. Подходящим местом для измерения тока является одна из обмоток вашего шагового двигателя.

Рекомендации по рассеиванию мощности:

Максимально допустимый ток подаваемый на обмотку, у микросхемы A4988 равен 2 A. Фактический ток, который можно подать на плату, зависит от качества охлаждения микросхемы. Плата разработана с учётом отвода тепла от микросхемы, но при токе выше 1 A на обмотку необходим теплоотвод или другое дополнительное охлаждение.

Эта плата может нагреться так, что можно получить ожог, задолго до того как перегреется сама микросхема. Будьте осторожны при обращении с платой и со всеми подключёнными к ней устройствами.

Обратите внимание, что ток, измеренный на источнике питания, как правило, не соответствует величине тока на обмотке. Так как напряжение, подаваемое на драйвер, может быть значительно выше напряжения на обмотке, то, соответственно, измеряемый ток на источнике питания может быть немного ниже, чем ток на обмотке (драйвер и обмотка в основном работают в качестве переключаемого источника с пошаговым понижением питания). Кроме того, если напряжение питания намного выше необходимого двигателю уровня для достижения требуемого тока, то скважность будет очень низкой, что также приводит к существенным различиям между средним и RMS током (среднеквадратичное значение переменного тока).

www.progdron.com

Настройка драйвера A4988. Первый запуск шаговых двигателей

Продолжаю сборку станка ЧПУ. Шаговые двигателя я уже подобрал. Для проверки электроники, собрал тестовое подключение на столе.

Сперва я подключил к CNC shield v3 шаговые двигателя:

17HS4401 - ток 1,7A EM-181 - ток 1,2A EM-142- значение максимального тока не нашел.

Двигателя выбраны сейчас нам нужно настроить рабочий ток драйверов A4988 для каждого шагового двигателя. Это можно сделать двумя способами:

1. Подключить двигатель в полношаговом режиме и замерить ток на одной обмотки. Он должен быть 70% от номинального тока двигателя. Т.е. для 17HS4401 1,7*0,7= 1,19 А

2. Рассчитать значение Vref — напряжение на переменном резисторе расположенном на драйвере А4988.

Формула Vref для A4988 изменяется от номинала токочувствительных резисторов. Это два черных прямоугольника на плате драйвера. Обычно подписаны R050 или R100.

Vref = Imax * 8 * (RS)

Imax — ток двигателя;

RS — сопротивление резистора. В моем случае RS = 0,100. Для 17HS4401 Vref = 1,7 * 8 * 0,100 = 1,36 В.

В связи с тем что рабочий ток двигателя равен 70% от тока удержания. Полученное значение нам нужно умножить на 0,7. В противном случае двигателя в режиме удержания будут сильно греться.

Для 17HS4401 Vref ист. = 1,36*0,7 = 0,952 В.

Аналогично рассчитываю значения для EM-181

Vref = 1,2 * 8 * 0,100 = 0,96 В

Vrefист. = 0,96*0,7 = 0 ,672 В.

Так как я не смог найти datasheets для ЕМ-142. Для расчетов предложил, что ток на обмотку данного двигателя составляет 0,6 А. Если двигатель будит издавать гул сильнее обычного значит ток превышает максимальное значение. Его нужно понижать. Так как я взял ток обмотки. При расчете Vref ист. Не нужно умножать на 0,7, как я говорил выше ток одной обмотки составляет 70% от номинального. Расчет будет вот таким:

Vrefист. = 0,6 * 8 * 0,100 = 0,48 В.

По моим ощущениям я угадал с током двигателя ЕМ-142. Останется рассчитать сколько шагов он делает для совершения одного оборота. Об этом расскажу в следующей статье.

В видео подключил кнопки «Пауза», «Продолжить», «Аварийная остановка» . Подключил на пины шпинделя светодиод. И протестировал работу. Так же установил один конечный выключатель. Все работает. Если у вас возникли вопросу что куда подключается к CNC shield v3, читайте статью: Плата расширения для Arduino UNO, CNC shield v3 и драйверов A4988

Подписывайтесь на мой канал на Youtube и вступайте в группы в Вконтакте и Facebook.

Спасибо за внимание!

Вернуться в раздел: Проекты на Arduino Дата публикации 29 июня , 2017

portal-pk.ru

Управление шаговым биполярным двигателем A4988ET [Рабочий код ino] - Автоматизация и проектирование

Многие схемотехники начинают городить большие платы с кучей транзисторов и интегральных схем для управления шаговыми биполярными (4 провода) двигателями. Очень часто это сложно, долго, громоздко, проблематично, дорого. Для решения данных проблемы существует плата драйвера биполярных двигателей основанная на микросхеме A4988ET. В оригинале эта плата предназначена для 3D принтеров. Далее о самой плате, распиновка и проверенный код для Arduino. Сразу заглянем внутрь самой микросхемы A4988ET, что бы понять в чем её преимущество. На рисунке ниже.

Биполярный двигатель имеет 4 проводаВ отличии от драйвера шагового биполярного двигателя на ULN2803APG данная схема имеет ряд преимуществ.Самое главное это то что развязка организованна на Mosfet транзисторах с затвором, с обратной защитой. Остальные преимущества узнаем после разбора просмотра распиновки платы A4988ET и характеристик.

Я долго мучался когда "городил" драйвер на микросхеме ULN2803 с резисторами (для создания разно полярного напряжения на обмотках, по ссылке выше). Резисторы часто перегревались, а парочка и вовсе взорвалась.

Поэтому данная микросхема - счастье и находка. В оригинале плата A4988ET предназначена для управления двигателями от 3D принтера и прекрасно сочетается с платой RAMPS.

Как видно на рисунке на плате A4988ET находятся радиаторы. При условии что рабочая температура всего лишь 60 градусов, основная микросхема имеет защиту от перегрева.

О характеристиках: Напряжения питания для двигателей: от 8 до 35 ВВозможно установить шаг двигателя: от 1 до 1/16 от целого шага (микрошаги)Сама микросхема имеет питание: 3-5.5ВМаксимальный ток: 1А без радиатора, 2А с радиаторомРазмер платы: 20 х 15 мм - как копейка

Ниже на рисунке изображена схема подключения платы.

ENABLE - Включение или выключение микросхемыRESET - Сброс работы логикиSTEP - Генерация ШИМ - скорости биполярного двигателя. Каждый импульс это шагDIR - Установка высокого или низкого уровня на входе регулирует направление вращения.VMOT -Питание для двигателя от 8 до 35 вольтGND - Минус питания для двигателя2B, 2A, 1A, 1B - Обмотки двигателя. Для определения обмоток двигателя замерьте сопротивление. Между разными обмотками бесконечное сопротивление, иначе вы увидите сопротивление 4-8 Ом значит что вы определили или 1ю или 2ю обмотку двигателя.VDD - Питание 5В для микросхемыGNG - Минус питания для микросхемыMS1, MS2, MS3 - Устанавливая на данных входах уровни 000, 100, 010, 110, 111 достигается режим полношагового, половинного шага, четверти шага, одна восьмая шага, и даже 1\16 от целого шага.Таким образом плата имеет широкие возможности.

Так выглядят на скорую руку подпаянные провода. Так же важно установить поддерживающий конденсатор в 1000 мкф (не 100, а 1000мкф 16Вольт !)

Основными моментами является:Не дай вам Боже случайно выдернуть подключенный двигатель от микросхемы при поданном питании - сгорит. В мануале к микросхеме написано что есть защита от кз. Но защиты от резкой смены нагрузки нет.

Код программы ниже опробован на Arduino Mega с довольно большим биполярным двигателем.

/*

* 1injener.ru

* Управление шаговым биполярным двигателем A4988ET [Рабочий код ino]

*

*/

int dirPin = 2; //Название переменной указывает DIR

int stepperPin = 3; //STERR Pin

void setup() {

pinMode(dirPin, OUTPUT);

digitalWrite(4,LOW); // Установка высокого уровня на Enable

pinMode(stepperPin, OUTPUT);

}

//Функция ШАГ. Принимает направление движения и количество шагов.

void step(boolean dir,int steps){

digitalWrite(dirPin,dir);

delay(50);

for(int i=0;isteps;i++){

digitalWrite(stepperPin, HIGH);

delayMicroseconds(800);

digitalWrite(stepperPin, LOW);

delayMicroseconds(800);

}

}

void loop(){

step(true,1000); //Движемся в одну сторону 1000 шагов

delay(3000);

step(false,3000); //Движемся в обратную сторону 3000 шагов

delay(3000); //Пауза

}

//http://www.geeetech.com/wiki/index.php/A4988_Stepper_Motor_Driver_Carrier_Board

Скачать скетч для Arduino: 1injener_ok_A4988.ino Официальные документы на A4988: Скачать a4988.pdf

Всё просто!

Другие статьи по разделу:

 ЖКИ дисплей WH0802 подключение к Ардуино [Много проводов]

 Управление шаговым биполярным двигателем A4988ET [Рабочий код ino]

1injener.ru

Установка тока шаговых двигателей, резонанс

30.09.2016 Сайт https://anteh.ru

Шум и вибрации эффектора снижаются подбором скорости печати, тока X Y Z драйверов, напряжением питания шаговых двигателей, перестановкой драйверов, возможно правильным подбором параметра dropsegments.При установке платы драйвера шагового двигателя в RAMPS 1.4, перед запуском шаговых двигателей, обязательно установить ток драйвера под используемый двигатель, или хотя бы его уменьшить. По умолчанию у красных A4988 опора стоит в 0.8V это 1A ничего плохого не случится, но у DRV8825 опора выставлена в 1.6V -это максимальный ток, в теории 3.2А, по документации DRV8825 рассчитан максимум на 2.5A(2.2А с обдувом), это может повредить, как двигатель, так и драйвер.В используемом дельта принтере стоит 4ре драйвера, китайские красные A4988 на фото ниже слева:

Они не позволяют установить максимальный паспортный ток шаговых двигателей 3х вертикальных X Y Z осей 1.7A (и это хорошо). Предельный ток для шагового двигателя экструдера(JK42HS40-1204D) 1.2A, для шаговых двигателей X Y Z осей(JK42HS60-1704A) 1.7А. Согласно документации максимальный ток у А4988 2A. Но у используемой платы драйвера A4988 его невозможно установить более 1.5A. Т.е. максимальный ток можно установить только для шагового двигателя экструдера. Связано с использованием вместо 20k резистора 30k в цепи формирования опорного напряжения платы драйвера. Сделано скорее для предотвращения перегрева и повреждения шаговых двигателей. Слишком большой ток может их повредить и в установке максимального тока нет необходимости, особенно для дельта принтера. Для дельта принтера ток устанавливаю на 30% меньше их максимального паспортного значения.

Забегая вперёд, использование дробления шага 1/32 вместо 1/16 не приведёт к увеличению разрешения принтера. Это приведёт к увеличению нагрева драйвера и двигателя, снижению момента двигателя. Не всегда использование 1/32 приведёт к снижению шума, как в режиме удержания, так и режиме хода. Поправить разрешение можно здесь. Всё будет зависеть от индивидуальных особенностей принтера, платы драйвера, шаговых двигателей. Причём оно настолько индивидуально, что при перестановке вроде бы одинаковых плат драйверов шум может уменьшиться или увеличится. Т.е. "шаманство" ещё то. В моём случае использование DRV8825 с дроблением 1/32 привело к существенному увеличению шума при удержании. Слабо уловимый свист А4988(Vref=1.2V=1.5A дробление 1/16) сменился на довольно заметное шипение/шелест DRV8825(Vref=0.85V=1.7A дробление 1/32) и только снижение тока до 0.9A поменяло шипение на еле различимый свист. Причём Y двигатель перестал шипеть при 1.2A, X при 1.1A, Z при 0.9. Перестановка одинаковых X Y Z драйверов меняет картину. В общем двигатель Y шипит/свистит существенно меньше остальных как с DRV8825 так и с А4988. Причём перестановка одинаковых драйверов меняет его шумность. Как видим всё не просто. Получается, для снижения шума нужно подбирать двигатели, драйвера, провода, мощность блока питания, напряжение питания двигателей, например поднять с 12 до 14V.Субъективно показалось, что при 1/32 ход по Z более тихий, но были положения в которых двигатель начинал очень сильно "шелестеть" почти скрипеть и положения, в которых его было не слышно.Фантазии по поводу разрешения. Для увеличения разрешения нужно использовать 0.9градусные двигатели вместо 1.8, с энкодером. Не дёшево и в ряде случаев это ничего, кроме опыта и морального удовлетворения не даст. Использую сопло 0.8мм толщина слоя 0.5мм, планирую на сопло 1.2 переходить. Диаметр стола 400 высота 835. Измеренная микрометром вертикальная погрешность, каждой из X Y Z осей используемого дельта принтера, при смене направления движения каретки 0.11мм. С такой погрешностью нет смысла о разрешении шагового двигателя беспокоиться, но это сравнительно малая погрешность. Используются рельсовые направляющие HIWIN, ремень GT2.

Как оно было:Показалось, что с А4988 принтер работает шумновато, решил попробовать DRV8825. 5шт. можно за 10$ приобрести, сам покупал за 275р. с рук:

Обращайте внимание на правильность ориентации платы драйвера при установке. Смотрите на шелкографию RAMPS 1.4 и нижней стороны платы драйвера, чтобы пины GND VDD и пр. совпадали.У DRV8825 максимальный шаг дробления 1/32 в 2 раза больший, чем у А4988. По умолчанию, джамперами, у А4988, шаг дробления выставлен 1/16. Такое же положение джамперов соответствует дроблению 1/32 у DRV8825. Ко всему нужно подправить прошивку и убедиться, что параметры применились, или в настройках, через меню принтера увеличить параметры в 2 раза control ->motion, смотрим последние 4ре параметра:

Это стандартные значения для 1.8град двигателя, дробление 1/16, ремень GT2 шаг 2мм и количество зубьев на шкиве двигателя =20. Для дробления 1/32 нужно установить Xsteps/mm, Ysteps/mm, Zsteps/mm в 160. Esteps не трогал, для него оставлен А4988.Также можно в исходнике прошивки marlin поменять:#define DEFAULT_AXIS_STEPS_PER_UNIT {80, 80, 80, 155} //{X Y Z E}на:#define DEFAULT_AXIS_STEPS_PER_UNIT {160, 160, 160, 155} //{X Y Z E}При необходимости 4ре коэффициента можно вычислить так:Для дельта принтера первые 3 коэффициента будут одинаковыми -это X Y X одинаковые двигатели.360/1.8 = 200 шагов на оборот. 1.8 -угол шага.(200*16)/(2*20) = 80 = (шагов на оборот * количество микро шагов устанавливается джамперами на RAMPS 1.4) /(приводной ремень GT2 с шагом 2 мм * 20-ти зубчатые шкивы на роторе шаговых двигателей каждой из XYZ осей)Последний коэффициент экструдера рассчитывается так:((200*16) / (d шкива подачи прутка * 3.14))*1.1 = (3200/(7.2мм*3.14))*1.1=~155d шкива подачи прутка -это наименьший его диаметр в центе. Коэффициенты могут быть дробными.

Расчёт опорного напряжения, для выставления предельного тока драйвера делается так:Для A4988:Vrefэкструдер = 1.2А * 8 * 0.1Ом = 0.96VVrefxyz = 1.7А * 8 * 0.1Ом = 1.36VДля DRV8825:Vrefэкструдер = 1.2А * 5 * 0.1Ом = 0.6VVrefxyz = 1.7А * 5 * 0.1Ом = 0.85VЗначения можем уменьшить на 30%.Для установки опорного напряжения используем любой мультиметр и отвёртку с изолированной ручкой. Включаем принтер, щуп минуса мультиметра на GND(земля) платы драйвера, плюс на движок подстроечного резистора -то что отвёрткой будем крутить. Двигатели должны быть отключены. Отвёрткой аккуратно выставляем нужное напряжение. Разные драйвера мешать можно, повторюсь соблюдайте правильную ориентацию установки драйвера, или приобретайте их с запасом.

А теперь эксперимент с попыткой снижения шума двигателей через стабилизацию опорного напряжения:По анализу принципиальных схем: A4988 использует 2 напряжения +5V и +12V питания двигателей. DRV8825 использует только +12V питания двигателей. Vref у A4988 формируется напрямую из +5V, у DRV8825 Vref формируется из +12V питания двигателей через встроенный стабилизатор +3.3V максимальный выходной ток 1ma. Было предположение, что чрезмерный шелест/свист может быть следствием плохой стабилизации Vref.Есть ещё несоответствие маркировки на нижней стороне платы драйверов, у A4988 1B 1A 2A 2B, у DRV8825 2A 1A 1B 2B. Скорее всего ,в первом случае для обозначения канала использовалась цифра, во втором буква. Не обращаем внимания.

На +5 и +12V была добавлена чип керамика 10u и 0.1u. И вместо +3.3V опоры, на подстроечный резистор, через 12k, были заведены +5V. Т.е. реализована схема как у A4988.Ток был выставлен такой же, как и для A4988. Дробление задано такое же 1/16.Результат:С Vref всё было в порядке, субъективно, по показаниям осциллографа встроенные 3.3V лучше, чем внешние +5V. Т.е. предположение о повышенном шуме из-за нестабильности Vref было не верным. Доработка не нужна. Из произведённой доработки смысл есть оставить на +12V конденсаторы 10u и 0.1u.Что касается акустического шума, с DRV8825 он субъективно стал меньше на 1/16. После autohome слышится ощутимый шелест, но при минимальном движении по X или Y наступает тишина, еле различимый свит, субъективно меньше, чем у A4988. Не обошлось без перестановки местами драйверов, шум при удержании снизился.Единственно явное преимущество замены A4988 на DRV8825 -это снижение тепловыделения, можно смело палец на радиаторе держать сколько угодно долго. DRV8825 с током 1.2А. шаг дробления 1/16. Под платой драйвера первый второй джампера сняты, третий установлен. Если использовать шаг дробления 1/32 то тепловыделение будет больше, чем для A4988 c 1/16.

Из всего делаю выводы:0. Со стабильностью Vref=3.3V у DRV8825 никаких проблем.1. Для тестируемого принтера предпочтительно использование DRV8825 с шагом дробления 1/16 и с правильно выставленным током для используемой скорости печати. Снижает шум и в силу особенностей конструкции существенно снижает нагрев драйвера. Можно в цепь +12V на драйвер напаять конденсаторы, чип керамику, например 10u(или более) 25V 1206 и 0.1u 0805, хуже не будет.2. Но если Вы решили собрать принтер сами, безопаснее использовать A4988, в отличие от DRV8825 у неё производитель выставляет безопасный ток 1A, предельный ток 1.5A, который при недосмотре не угробит, ни сам драйвер, ни двигатель. На A4988 можно в цепи питания +5 и +12V на драйвере напаять дополнительную чип керамику.3. Единственное что позволило снизить шипение при удержании -это снижение тока и перестановка драйверов местами, дробление(для используемого принтера) осталось 1/16. DRV8825 субъективно начинал шипеть на большем токе, чем A4988. С DRV8825 печать различимо тише. Можно попробовать купить пачку другую шаговых двигателей и подобрать наименее шумные, вряд ли в этом есть смысл.

Реально и объективно замена A4988 на DRV8825, снизит тепловыделение при дроблении 1/16 и шум при печати. Перестановка драйверов местами может снизить шум/шелест при удержании двигателя. Снижение тока драйверов снижает шум, но нужно следить за отсутствием пропуска шагов. Для дельта принтера можно ставить ток на 30% и более % меньше максимального паспортного тока шагового двигателя, но нужно следить за отсутствием пропуска шагов и отсутствием вибраций эффектор. Использование дробления 1/32 увеличивает тепловыделение драйвера, снижает максимальную скорость печати и не всегда приводит к снижению аккустического шума и резонансных явлений.

Установка тока X Y Z драйверов дельта принтера

Последняя на 15.09.2016 прошивка marlin, меняем параметр DEFAULT_STEPPER_DEACTIVE_TIME с 60 на 600, чтобы двигатели не отключались через 60 секунд при простое:#define DEFAULT_STEPPER_DEACTIVE_TIME 600Команда autohome g28, включаем шаговые двигатели на удержание. Меряем и настраиваем токи XYZ драйверов, как 30% от максимального паспортного значения тока двигателя. По паспорту 1.7A настраиваем 1.2А.Создаём или берём какую-либо длинную модель, растягиваем на весь рабочий стол, скорость печати задаём, например 35мм/сек, формируем G код. Высоту печати настраиваем, чтобы она началась на высоте, например 50мм от поверхности стола, филамент вытаскиваем из экструдера, реальная печать не производится. Через SD карту запускаем на печать. На LCD экране принтера скорость печати 100%, фейдером её можно до 999% довести т.е. увеличить с 35мм/сек до 35*9.99 до 350мм/сек. Смотрим максимальную паспортную скорость принтера, в текущем случае производитель заявляет 300мм/сек. Т.е. при скорости печати 35мм/сек могу произвести аппаратное увеличение скорости печати через меню принтера до 850%.Далее, у нас есть 2 настраиваемых параметра, аппаратная скорость печати от 100%(35мм/сек) до 850%, это 35-300мм/сек и ток X Y Z драйверов. Как обратную связь контролируем пропуск шагов и вибрации эффектора при движении хотэнда по окружности и/или прямой.Проверим пропуски шагов, настраиваем токи X Y Z в 1.2A (для 1.7А двигателей), и плавно увеличиваем скорость печати шагами по 50%. Для DRV8825 ток 1.2А заметные пропуски начинаются на 850%. Проявляются в виде щелчков и опускании плоскости печати по вертикальной оси вниз, во время щелчков экструдер понемногу приближается к столу, причём наблюдается перекос плоскости печати. Ниже 3 демонстрационных видео демонстрирующих пропуски шагов:DRV8825 ток 1.2А скорость 300мм/секDRV8825 ток 1.6A скорость 300мм/секA4988 ток 1.2A скорость 300мм/сек

Реальная комфортная скорость для точной печати у этого принтера 25-40мм/сек, после описанных изменений. Можно печатать до 100мм/cек. Драйвер DRV8825 ток 0.8А, дробление 1/16. Максимальная скорость в районе 200мм/сек, с DRV8825, если выше, то наблюдаются пропуски.Для DRV8825 ток 0.5А, 1/16, пропуски наблюдаются на 300% или 105мм/сек. В управляющем файле задана скорость 35мм/сек.Тестируемый принтер, вопреки маркетинговым заявлением продавца, не будет работать со скоростью печати 300мм/сек, нужно пробовать увеличить напряжение питания шаговых двигателей.Наблюдается некая вилка скоростей печати, при которых эффектор не вибрирует, резонансные явления минимальны. Он вообще не вибрирует, до скоростей 40-60мм/сек, далее начинает немного вибрировать в центральной части стола. Потом вибрации усиливаются и затем на 250мм/сек и более, снижаются. Увеличение напряжения питания шаговых двигателей должно увеличить скорость их работы, и соответственно скорость печати, что весьма актуально, в том числе изменить шумность работыи повлиять на резонансные явления.На скоростях, в районе 300мм/сек и более, для тестируемого принтера, вибрации эффектора слабы. Чем плохи вибрации эффектора или резонанс? Качество печати не проверял, но помимо шума резонанс убивает механику принтера, существенно снижает момент. В любом случае 40-60мм/сек качественной печати это очень хорошо. Резонанс существенно снижает момент двигателя, дробление шага также снижает момент, но если, например при дроблении 1/8 будет наблюдаться резонанс, а при 1/16 его не будет, то можно сказать что при увеличении дробления до 1/16 момент увеличился т.к. исчез резонанс. Паразитный резонанс может снижать момент в большей степени, чем дробление.Пока закончилось так: драйвер DRV8825, ток X Y Z =1.3A, дробление 1/16. Питание шаговых двигателей оставлено прежним +12V. На глаз - увеличение тока драйверов X Y Z приводит к снижению вибраций эффектора. Возможно, ток будет установлен в 0.6A и напряжение питания +24VDC от линейного источника питания. Об этом в других статьях

anteh.ru

rss