Автопортал || Авто - статьи

Сельскохозяйственная техника
Чтение RSS

Главная Новости

СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА

Опубликовано: 27.08.2018

видео СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА

Урок №17. Транзистор. Часть вторая.
 

главная

основы

элементы

примеры расчетов

любительская технология

общая схемотехника



радиоприем

конструкции для дома и быта

связная аппаратура

телевидение

справочные данные

измерения

обзор радиолюбительских схем в журналах

обратная связь

      реклама  

 

 

  схемы включения транзистора       если нет блока КПЕ      усилители ЗЧ      усилители РЧ     усилители ЗЧ на микросхемах      источники питания     применение цифровых микросхем в линейном режиме


Общий эмиттер. Теория и пример расчета

        СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА

Любой усилитель, независимо от частоты, содержит от одного до нескольких каскадов усиления. Для того, чтобы иметь представление по схемотехнике транзисторных усилителей, рассмотрим более подробно их принципиальные схемы.


Схемы включения полевых транзисторов

Транзисторные каскады, в зависимости от вариантов подключения транзисторов, подразделяются на:

1 Каскад с общим эмиттером (на схеме показан каскад с фиксированным током базы - это одна из разновидностей смещения транзистора).

2 Каскад с общим коллектором

3 Каскад с общей базой

Каскад с общим эмиттером обладает высоким усилением по напряжению и току. К недостаткам данной схемы включения можно отнести невысокое входное сопротивление каскада (порядка сотен ом), высокое (порядка десятков Килоом) выходное сопротивление.  Отличительная особенность - изменение фазы входного сигнала на 180 градусов (то есть - инвертирование). Благодаря высокому коэффициенту усиления схема с ОЭ имеет преимущественное применение по сравнению с ОБ и ОК.

Рассмотрим работу каскада подробнее: при подаче на базу входного напряжения - входной ток протекает через переход "база-эмиттер" транзистора, что вызывает открывание транзистора и, в следствии этого, увеличение коллекторного тока. В цепи эмиттера транзистора протекает ток, равный сумме тока базы и тока коллектора. На резисторе в цепи коллектора, при прохождении через него тока, возникает некоторое напряжение, величиной значительно превышающей входное. Таким образом происходит усиление транзистора по напряжению. Так как ток и напряжение в цепи - величины взаимосвязанные, аналогично происходит и усиление входного тока. 

Схема с общим коллектором обладает высоким входным и низким выходным сопротивлениями. Коэффициент усиления по напряжению этой схемы всегда меньше 1. Входное сопротивление каскада  с ОК зависит от сопротивления нагрузки (Rн) и больше его (приблизительно) в Н21э раз . (Величина "Н21э" - это статический коэффициент усиления данного экземпляра транзистора, включенного по схеме с Общим Эмиттером).   Данная схема используется для согласования каскадов, либо в случае использования источника входного сигнала с высоким входным сопротивлением. В качестве такого источника можно привести, например, пьезоэлектрический звукосниматель или конденсаторный микрофон. Схема с ОК не изменяет фазы входного сигнала. Иногда такую схему называют Эмиттерным повторителем .

Схема включения транзистора с общей базой используется преимущественно в каскадах усилителей высоких частот. Усиление каскада с ОБ обеспечивает усиление только по напряжению. Данное включение транзистора позволяет более полно использовать частотные характеристики транзистора при минимальном уровне шумов. Что такое частотная характеристика транзистора? Это - способность транзистора усиливать высокие частоты, близкие к граничной частоте усиления, Эта величина зависит от типа транзистора. Более высокочастотный транзистор способен усиливать и более высокие частоты. С повышением рабочей частоты, коэффициент усиления транзистора понижается. Если для построения усилителя использовать, например, схему с общим эмиттером, то при некоторой (граничной) частоте каскад перестает усиливать входной сигнал. Использование этого - же транзистора, но включенного по схеме с общей базой, позволяет значительно повысить граничную частоту усиления. Каскад, собранный по схеме с общей базой, обладает низким входным и невысоким выходным сопротивлениями (эти параметры очень хорошо согласуются при работе в антенных усилителях с использованием так называемых "коаксиальных" несимметричных высокочастотных кабелей, волновое сопротивление которых как правило не превышает 100 ом). Если сравнивать величины сопротивлений для каскада с ОЭ и ОБ, то входное сопротивление каскада с ОБ в (1+Н21э) раз меньше, чем с ОЭ, а выходное в (1+Н21э) раз больше. Каскад с ОБ не изменяет фазы входного сигнала.

В практике радиолюбителя иногда приходится использовать параллельное включение транзисторов для увеличения выходной мощности (коллекторного тока). Один из вариантов данного включения приведен ниже:

При таком включении нужно стремиться использовать транзисторы с близкими параметрами Вст. Транзисторы большой мощности при этом должны устанавливаться на один теплоотвод. Для дополнительного выравнивания токов в данной схеме в цепях эмиттеров применены резисторы. Сопротивление резисторов следует выбирать исходя из падения напряжения на них (в интервале рабочих токов) около 1 вольта (или, по крайней мере, - не менее 0,7 вольта). Данная схема должна применяться с большой осторожностью, так как даже транзисторы одного типа и из одной партии выпуска имеют очень большой разброс по параметрам. Выход из строя одного из транзисторов неизбежно приведет к выходу из строя и других транзисторов в цепочке... При параллельном включении двух транзисторов максимальный суммарный ток  коллектора не должен превышать 1,6-1,7 от предельного тока коллектора одного из транзисторов! Количество транзисторов, включенных по этой схеме может быть сколько угодно большим - все зависит от целесообразности...

В радиолюбительской практике иногда необходим транзистор с проводимостью, отличной от имеющегося (например - в выходном каскаде УЗЧ и проч.) . Выйти из положения позволяет схема включения, приведенная ниже:

В данном каскаде используется как правило маломощный транзистор VT1 необходимой проводимости, транзистор VT2 необходимой мощности , но другой проводимости. Данный каскад (в частности) эквивалентен транзистору с проводимостью N-P-N большой мощности с высоким коэффициентом передачи тока базы (h21Э). Если мы используем в качестве VT1, VT2 транзисторы противоположной проводимости - получим мощный составной транзистор с проводимостью P-N-P.

Если в данной схеме применить транзисторы одной структуры - получим так называемый Составной транзистор. Такое включение транзисторов называют   Схемой Дарлингтона . Промышленность выпускает  такие транзисторы в одном корпусе. Существуют как маломощные (типа КТ3102 и т.п.)  так и мощные (например - КТ825) составные транзисторы.

А сейчас поговорим немного о температурной стабилизации усилителя.

Транзистор, являясь полупроводниковым прибором, изменяет свои параметры при изменении рабочей температуры. Так, при повышении температуры, усилительные свойства транзистора ухудшаются. Обусловлено это рядом причин : при повышении температуры значительно увеличивается такой параметр транзистора, как обратный ток коллектора . Увеличение обратного тока коллектора транзистора приводит к значительному увеличению коллекторного тока и к смещению рабочей точки в сторону увеличения тока. При некоторой температуре коллекторный ток транзистора возрастает до такой величины, при которой транзистор перестает реагировать на слабый входной (базовый) ток. Попросту говоря - каскад перестает быть усилительным. Для того, чтобы расширить диапазон рабочих температур, необходимо применять дополнительные меры по температурной стабилизации рабочей точки транзистора. Самым простым способом является коллекторная стабилизация рабочего тока смещения. Рассмотренная нами выше схема каскада по схеме с общим эмиттером является схемой с фиксированным током базы. Ток коллектора в данной схеме зависит от параметров конкретного экземпляра транзистора и должен устанавливаться индивидуально при помощи подбора величины резистора R1. При смене транзистора начальный (при отсутствии сигнала) ток коллектора приходится подбирать заново, так как транзисторы даже одного типа имеют очень большой разброс статического коэффициента усиления тока базы (h21 Э). Другая разновидность каскада - схема с фиксированным напряжением смещения. Эта схема также обладает недостатками, описанными выше:

Для повышения термостабильности каскада необходимо использовать специальные схемы включения:

Схема коллекторной стабилизации, обладая основными недостатками схемы с общим эмиттером (подбор резистора базового смещения под конкретный экземпляр транзистора), тем не менее позволяет расширить диапазон рабочих температур каскада. Как видим, данная схема отличается подключением резистора смещения не к источнику питания, а в коллекторную цепь. Благодаря такому включению удалось значительно (за счет применения отрицательной обратной связи ) расширить диапазон рабочих температур каскада. При увеличении обратного тока коллектора транзистора, увеличивается ток коллектора, что вызывает более полное открывание транзистора и уменьшение коллекторного напряжения. Уменьшение коллекторного напряжения, в свою очередь, уменьшает напряжение начального смещения транзистора, что вызывает уменьшение коллекторного тока до приемлемой величины. Таким образом - осуществляется отрицательная обратная связь, которая несколько уменьшает усиление каскада, но зато позволяет увеличить максимальную рабочую температуру.

Более качественную стабилизацию температурных параметров каскада усиления можно осуществить, если несколько усложнить схему и применить так называемую " эмиттерную " температурную стабилизацию . Данная схема, несмотря на сложность, позволяет каскаду сохранять усилительные свойства в очень широком интервале рабочих температур. Кроме того, применение данной схемы стабилизации дает возможность замены транзисторов без последующей настройки. Отдельно скажу о конденсаторе С3 . Этот конденсатор служит для повышения коэффициента усиления каскада на переменном токе. Он устраняет отрицательную обратную связь каскада. Емкость этого конденсатора зависит от рабочей частоты усилителя. Для усилителя звуковых частот емкость конденсатора может колебаться от 5 до 50 микрофарад, для диапазона радиочастот - от 0,01 до 0,1 микрофарады (но его в некоторых случаях может и не быть) .

Теперь давайте попробуем расчитать термостабильный каксад по постоянному току:

ВНИМАНИЕ! Данные расчета получаются довольно приблизительные! Окончательный номинал резистора R1 потребуется подобрать при наладке более точно!

Для начала нам нужно определиться с исходными данными для расчета. На верхнем прямоугольнике даны постоянные величины соответственно для германиевого (Ge) и кремниевого (Si) транзистора.

Для начала расчета нам нужны следующие входные параметры : Напряжение питания (Uk), в Вольтах (Принимаем - как пример - равное 6 вольтам). Ток коллектора (Ik), в Миллиамперах (принимаем равный 1 миллиамперу); тип транзистора (Ge. Si), минимальная рабочая частота Fmin  в герцах (предположим 150000 герц - для работы в диапазоне ДВ) . Сопротивление в цепи коллектора R3 принимаем равным 1 Килоому. Величина этого резистора обычно не расчитывается а берется равным 750 ом - 4,7 Килоом. От величины этого резистора зависит коэффициент усиления каскада по переменному току . Транзистор, предположим, КТ315 - кремниевый. Расчет ведем согласно рисунку сверху-вниз!

Вначале по формуле расчитываем сопротивление резистора в цепи эмиттера  R4 = 0,6 килоом .

Далее находим сопротивление резистора R2 = 19,5 килоом .

Далее - сопротивление резистора R1 = 70,5 Килоом.

По формуле вычисляем минимальную емкость конденсатора С1 = 0,016 микрофарад . Здесь можно без ухудшения частотных свойств каскада поставить конденсатор большей емкости (например на 0,022 микрофарад).

Так, произведя несложные вычисления, мы получили расчитанный каскад для работы в усилителе радиочастоты . Так как во время расчета мы получили номиналы резисторов не соответствующие стандартному ряду, можно несколько скорректировать их. Так вместо резистора R4 можно поставить резистор на 620 ом, резистор R2 заменим на резистор с номиналом 20 килоом, резистор R1 заменяем на резистор 75 килоом. Эти незначительные отклонения от расчета не приведут к каким либо проблемам при работе каскада - всего навсего слегка изменится коллекторный ток...

Теперь давайте расчитаем работу каскада по переменному току:

Для этого расчета нам потребуются следующие параметры: Сопротивления резисторов R1 - R4, Входное сопротивление следующего (нагрузочного) каскада.

Сначала определяем сопротивление Rэ. Для нашего случая (ток коллектора 1 миллиампер) Rэ = 26 ом,

Далее определим проводимость S = 38.46 микросименса (ориентировочно),

Вычисляем значение R11. Для транзистора типа КТ315Б среднее значение параметра h21э равно 200, отсюда R11 равно 5200,

Величину Rb необходимо определить для вычисления входного сопротивления каскада, являющегося нагрузкой расчитываемого. Она равна (при номиналах резисторов, взятых в нашем примере)  5,75 килоом,

Для упрощения расчета можно не вычислять сопротивление Rн, а принять его равным R3.

Ожидаемый коэффициент усиления данного каскада на транзисторе типа КТ315Б со средним значением h21э равным 200 получается около 40.

Следует иметь в виду, что полученное значение коэффициента усиления каскада весьма приблизительно! На практике это значение может отличаться в 1,5 - 2 раза (иногда - больше) и зависит от конкретного экземпляра транзистора!

При расчете коэффициента усиления транзистороного каскада по переменному току следует учитывать, что этот коэффициент зависит от частоты усиливаемого сигнала. Максимальная частота примененного транзистора должна быть по крайней мере в 15-20 раз выше предельной частоты усиления  (определяется по справочнику).

Для написания этой странички использовались материалы из книги "Краткий радиотехнический справочник." Авторы Богданович и Ваксер, Издательство "Беларусь" 1976 год.

Литература по теме: Небольшой учебник "Азы транзисторной схемотехники" (около  380 килобайт), найденный мной в интернете, можно скачать по этой ссылке .

Пользователь сайта Wind написал  программу-калькулятор для облегчения расчетов каскада с общим эмиттером . Программа работает в Exel.

Книжка "Расчет схем на транзисторах" лежит здесь (довольно древняя - 1969 года издания, но вполне актуальная!) обьем около 8 мБайт.

 
rss